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ABSTRACT

This work presents history-based prefetching, a prediction-prefetching technique that

collects the recent history of accesses to individual shared memory pages and uses

that information to predict the next access to a page. When a prediction is made,

consistency actions are taken and the page is prefetched from the remote node as if

the access request had been done. The analysis is extended by searching an optimal

value for the history size used by the prediction.

On correct predictions, this technique allows to hide the latency generated by page

faults on the remote node when the access is effectively done. The prediction strategy

is improved by adding support to recognize some previously defined memory access

patterns.

Our experiments show that history-based prefetching can dramatically decrease la-

tency and improve the performance of parallel applications that show a regular access

pattern (between 30 and 60% execution time). Furthermore, applications with an

irregular access pattern can also be benefitiated (around 2% execution time).

viii
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I. INTRODUCTION

Software distributed shared-memory (DSM) systems provide programmers with a

virtual shared memory space on top of low cost message-passing hardware, and the

ease of programming of a shared memory environment, running on a network of

standard workstations (Li and Hudak, 1989).

However, in terms of performance, DSM systems suffer from high latencies when ac-

cessing remote data due to the overhead of the underlying message-passing layer

and network access (Cox, Dwarkadas, Keleher, Lu, Rajamony and Zwaenepoel,

1994; Pinto, Bianchini and de Amorim, 2003). To address these issues several

latency-tolerance techniques have been introduced, including relaxed consistency

protocols designed to reduce the amount of communication and coherence overhead,

and multiple-writer protocols that reduce the effects of false sharing (Amza, Cox,

Dwarkadas, Keleher, Lu, Rajamony, Yu and Zwaenepoel, 1996; Keleher, Cox and

Zwaenepoel, 1992). Other approaches are runtime adaptation between update and

invalidate coherence, adaptation between single-writer and multiple-writer proto-

cols (Amza, Cox, Dwarkadas, Jin, Rajamani and Zwaenepoel, 1999), and detection

of memory sharing patterns (Monnerat and Bianchini, 1998).

A technique closely related to adaptation is prefetching, which reduces latency by

sending data to remote nodes in advance of the actual data access time. However,

effective prefetching in software DSM systems can be quite complex for two main

reasons: 1) it is offen difficult to predict future data accesses, and 2) prefetches

generate significant overhead when issued unnecessarily (Pinto et al., 2003). Hence,

a good prefetching technique must achieve a high hit ratio, and provide a way to
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detect and avoid incorrect prefetches. Also, the overhead of making a prediction

must be considered.

This work presents history-based prefetching, a prediction-prefetching strategy that

collects the recent history of accesses to individual shared memory pages, and uses

that information to predict the next access to a page through the identification of

memory access patterns. When an access to a page is predicted, consistency actions

are taken and the page is prefetched from the remote node as if the access had been

done. This technique hides the latency generated by the page fault when the access

is effectively done. The remote node does not have to wait for the page to arrive;

it can use the prefetched copy immediately and continue working. A history update

scheme avoids repeating wrong predictions when they are detected.

Throughout the execution of an application, the number of accesses made to a certain

page can be very large. Hence it could be highly inneficient to store the whole history

of accesses made to each page. The solution to this problem is to store only the M

most recent accesses. The parameter M therefore determines the size of the page

history. Experiments were conducted to estimate an optimal value for this parameter.

The predictive strategy is presented in a general way. Although the prefetching

implementation is shown over a sequential-consistent protocol, the concept can be

applied to other consistency protocols as well.

A series of experiments were done with three applications running over a page-based

DSM system, on a 8-nodes linux cluster. Results show that history-based prefetching

is an effective technique to reduce latency in applications that show a regular memory

access pattern, and thus improve their performance, even though sending more data
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than a normal execution.

Regarding the optimal value for M , results show that small values for M provide a

better performance in the tested applications. Bigger values tend to generate more

latency when page history is transmitted, and does not provide a major benefit in

the prediction efficiency.
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II. RELATED WORK

A large number of papers have been published on adaptation and prefetching in soft-

ware DSM systems (Pinto et al., 2003; Amza et al., 1999; Monnerat and Bianchini,

1998; Lee, Yun, Lee and Maeng, 2001; Bianchini, Pinto and Amorim, 1998; Seidel,

Bianchini and de Amorim, 1997; Amza, Cox, Rajamani and Zwaenepoel, 1997; Bian-

chini, Kontothanassis, Pinto, Maria, Abud and de Amorim, 1996; Karlsson and Sten-

ström, 1997; Mueller, 1999). Amza et al. (Amza et al., 1999) presented an adaptive

version of Treadmarks (Amza et al., 1996) that dynamically adapts between single-

writer and multiple-writer modes, and also between invalidate and update coherence

protocols. They also show dynamic page aggregation, where pages are dynamically

grouped, and sent when a page fault happens inside the group (Amza et al., 1997).

This page grouping has a similar effect to prefetching, though they do not consider

sharing patterns.

Bianchini et al. have done important work in prefetching techniques for software

DSM systems. They developed the technique B+ (Bianchini et al., 1996) which

issues prefetches for all the invalidated pages at synchronization points. The result

is a high decrease of page faults, but at the cost of sending too many pages that will

not be used and increasing bytes transfer.

Seidel et al. proposed the affinity entry consistency protocol (Seidel et al., 1997),

based on entry consistency (Bershad and Zekauskas, 1991), and introduced Lock

Acquirer Prediction (LAP), a technique to predict the next acquirer of a lock using

centralized managers to gather global information. History-based prefetching avoids

the necessity of centralized information.
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Bianchini et al. also presented the Adaptive++ technique (Bianchini et al., 1998)

that predicts data access and issues prefetches for those data prior to actual access.

Their work uses a local per-node history of page accesses that records only the last

two barrier-phases and issues prefetches in two modes: repeated-phase and repeated-

stride. Lee et al. (Lee et al., 2001) improved their work, using an access history

per synchronization variable. History-based prefetching uses a distributed per-page

history to guide prefetching actions, in which multiple barrier-phases can be collected

leading to a more complete information about the page behavior. Prefetches are only

issued at barrier synchronization events.

Monnerat and Bianchini (Monnerat and Bianchini, 1998) present a categorization

of pages called sharing pattern categorization (SPC), based on the sharing behavior

of each page. This approach uses association between lock variables and the data

they protect. Their main ideas have been applied to the sharing patterns used by

history-based prefetching.

Karlsson et al. (Karlsson and Stenström, 1997), propose a history prefetching tech-

nique that uses a per-page history, and exploits the producer-consumer access pat-

tern, and, if the access pattern is not detected, uses a sequential prefetching. History-

based prefetching differs in that it supports more access patterns, and the page history

mechanism provides more flexibility to find repeated patterns that are not catego-

rized. Also, if no pattern is detected, no prefetching action is generated, avoiding

useless prefetches.
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III. HISTORY-BASED PREDICTION

History-based prediction is a technique that allows processors to prefetch shared

memory pages and make them available before they are actually accessed. Using

a correct prefetching, page faults are avoided and the latency due to interruptions

and message waiting from other nodes is hidden, improving the overall application

performance.

Historical information about page behavior is collected between two consecutive

barrier events, which are called execution phases. Predictions are generated inside

a barrier event to make sure that no other node may generate regular consistency

messages, and avoid overlapping of those messages and prefetching actions. When

every node has reached a barrier, a prediction phase is executed, in which every node

makes predictions using the information collected and speculatively sends pages to

other nodes, as it is showed in Figure III.1. After that, the barrier is released.

History-based prediction introduces extra messages on wrong predictions. The pro-

cessing time required to generate the predictions and to issue prefetches also has to be

considered, but it will be shown that the benefits from useful predictions overweight

the additional processing needed to generate them.

P1

P2

P3 prediction
phase

execution
phase

B
A
R
R

E
R

I

A
B

R
R
I
E
R

execution
phase

Figure III.1 Execution and prediction phases
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The prefetching scheme considers three steps:

1. Collect access history information in a per-page basis.

2. Make predictions according to a prediction strategy using the access history or

the identification of some defined page access patterns.

3. Execute prefetching actions and, if needed, consistency actions when a write

access is predicted, to send the page to the destination nodes.

III.1 Page History

History-based prediction is based on a structure that stores the access history for

each shared memory page. This structure is called page history. A page history is a

list H, composed of M history elements: H = 〈h1, h2, . . . , hM〉. Each history element

hi represents one access to one shared memory page and includes the following data:

– A pair (host,access) indicating the node that accessed the page and the

access mode used. Access mode can take the values r, if the access is read-

only, or w if it is read-write. This is represented as labels consisting of host

and access. For example, label 2r means that node 2 accessed the page in

read-only mode.

– barrier. Number of the execution phase when the access was actually made.

– A list of pairs (predDest,predMode). Each pair indicates a prediction that

was made in the past, when this history element was the last in the page history.
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Because the number of accesses to a page could be very large, only the last M history

elements are kept, reflecting the last M accesses to the page. Our assumption is that

only the most recent accesses are relevant in order to predict the immediate page

behavior. The parameter M determines the amount of history that is kept to take

prediction decisions, and that is sent to other nodes along with the ownership of the

related page.

A page history is updated using a sequential-consistent model. A page history mi-

grates between nodes along with the ownership of the page where it belongs, every

time a node gets permission to write on that page. At any time, only the owner of

the page can update its page history. This scheme can be used with any consistency

protocol that preserves a unique owner.

The page history of page p is updated as follows:

1. When owner j receives a read-fault notice from remote node k on page p, then

a new history element labeled kr is added to the history of page p. Only the

first read access by the remote node is recorded, as subsecuent reads will not

generate read-faults and will not be noticed by the owner.

2. When owner j generates a write-fault on page p, then the previous element,

if it exists, is examined. If the previous element is labeled jr and it belongs

to the same barrier phase as the actual access, then the previous element is

replaced by the new one, labeled jw. If it does not belong to the same barrier

phase, a new element labeled jw is added to the history of page p.

3. When owner j receives a write-fault notice from remote node k on page p,

then the previous element, if it exists, is examined. If the previous element is
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labeled kr and it belongs to the same barrier phase as the actual access, then

the previous element is replaced by the new one, labeled kw. If it does not

belong to the same barrier phase, a new element labeled kw is added to the

history of page p. After that, the page history is transferred to the new owner

k.

The last two cases, where element xr is replaced by xw, represent the fact that

applications often read from a variable and then immediately write on the same

position during the same execution phase. This is called history compression and is

done to get a more precise record of the page behavior.

When remote reads are detected, only the first read access of each remote node is

recorded, as subsecuent reads will not generate read-faults, so they will not be noticed

by the owner. This is not important for the page history because the sharing pattern

is based on information about which nodes read the page, and not how many read

accesses were done. Such complete information would lead to an excessive processing

overhead, because every access would have to be detected.

III.2 Prediction strategy

Predictions are made at the end of each execution phase, when all nodes have reached

a barrier, to avoid overlapping with regular consistency actions. Every node executes

a predictive routine for each page that it owns, and makes a list of predicted desti-

nations. The pseudocode is shown in Figure III.2.

The Prediction routine attempts to find a pattern on the page history, by looking

for the most recent repetition of the last D accesses seen, and predicting the same
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Node k:

for each page p owned by k

if( p.Prediction() )

p.ExecutePrediction()

Figure III.2 Pseudocode executed by each node to generate predictions

behavior that was seen, in the past, after that sequence. In applications that show a

regular memory access pattern, the repetition of a certain sequence of accesses can

be expected, so that this prediction is hoped to be correct in most situations.

In some cases, more than one future read access can be predicted, and a list of read

accesses is generated instead of only one. In that case, one copy of the page is sent

to every predicted destination.

If the routine can not deduce a possible next access, then no prediction is made ;

otherwise, another routine is called to actually execute the predictions.

A page history is analyzed using a fixed-size window W of length D < M , W =

〈w1, w2, . . . , wD〉 and comparing them to the last D accesses on page history, stored in

the list Last = 〈hM−(D−1), . . . , hM−1, hM〉. Last is compared to WS = 〈hM−(D−1)−S, hM−(D−2)−S, . . .

for S ∈ {1, 2, ...,M−D} in increasing order. If both lists happen to be equal, then the

access hM−S+1 is predicted as the next access for the page, as shown in Figure III.3.

The Pseudocode is presented in Figure III.4.

If the status of the page is PREFETCHED, it means that the page is owned by the node

because of a previous prefetching action and was not accessed during the previous

execution phase. In this situation the page was predicted but it was not used by the

destination node, so it should not be predicted again.
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4 5 6 7 8 9 10 11 12barrier

history

access 1w

133

2r

1w

prediction

window

3w1w 2r3w2r 1w0r 2r 3w 0r

D=4

0r

last
M

S=4

1 2

Figure III.3 Prediction of access 2r with D = 4. The match was found when S = 4.

p.Prediction():

if (p.status == PREFETCHED)

return 0;

for(i=0;i<D;i++)

last[i] = p.history[M-(D-i-1)];

for(s=1;s<M-D;s++) {

for(i=0;i<D;i++)

window[i] = p.history[M-(D-i-1)-s)];

if(compare(last,window)) {

p.history[M].addPrediction(p.history[M-s+1)]);

return 1;

}

}

return 0;

Figure III.4 Pseudocode to generate a prediction for one page
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III.3 Pattern analysis

The page behavior may also be predicted by the identification of three predefined

page access patterns and taking appropriate actions for each one. If no pattern can

be detected, then the prediction routine described in section III.2 can be used.

Pattern detection is based on the categorization described by Monnerat and Bian-

chini (Monnerat and Bianchini, 1998), where page behavior can be classified as

1PMC, MIG and MW.

– 1PMC is a one producer - multiple consumers pattern. It may be recognized

when the last access is a local read-write, and the previous are two or more

consecutive read-only access. In this case the generated predictions are read-

only accesses to each node that reads the page. An example is shown in Figure

III.5. Node 1 is the only one that writes on the page, and nodes 0, 2 and 3 are

consumers.

Another case of 1PMC pattern is when the last accesses are two or more con-

secutive read-only accesses. The generated prediction is a read-write to the last

node that wrote the page. In the example shown in Figure III.5, the prediction

for the history element 0r in barrier 6, would have been 1w.

– MIG is the pattern where one page is owned by different nodes in different

execution phases. In this case no special action is taken, since the basic pre-

diction strategy is capable of dealing with that case. An example is shown in

Figure III.6.

– MW is the pattern where one page is owned by different nodes in the same
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1w 2r 0r 3r 1w 0r 3r 1w 2r 3r

1 2 2 3 4 4 4 5 6 6barrier

history

access 2r 0r 1w

762

prediction 2r 3r 0r

Figure III.5 1PMC behavior. Read-only copies are sent to readers 0,2,3 by the writer

1.

4 5 6 7 8 9 10 11 12barrier

history

access 1w

133

2w

1w

prediction

3w1w 2w3w2w 1w0w 2w 3w 0w0w

1 2

last

window

Figure III.6 MIG behavior. The page is owned by a different node at each execution

phase.

execution phase. In this case it is hard to make a good prediction. Since the

prediction strategy only works at the end of an execution phase, at most 1 page

fault may be avoided and the N − 1 remaining writes will still generate page

faults. An example is shown in Figure III.7.

The case may be even worse if the nodes must compete for the access to the

page, which will make the access almost random at every phase, as it is shown

in Figure III.8. In this case, the prediction strategy should avoid making any

prediction. A discussion is presented in section IV.5.

As it happens in the Prediction routine, if the page is in PREFETCHED state, then

no prediction is made.
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2 2 3 3 3 3 4 4 4barrier

history

access 1w

42

2w

1w

prediction

3w1w 2w3w2w 1w0w 2w 3w 0w0w

1 2

Figure III.7 MW behavior. Only 2w can be predicted without generating page faults.

2 2 3 3 3 3 4 4 4barrier

history

access 0w

42

1w

1w

prediction

1w2w 0w3w0w 2w3w 3w 1w 2w1w

1 2

probably
wrong

last

window

Figure III.8 MW behavior. 2w is predicted but the next node to access the page may

be anyone.

III.3.1 Page History Size

The size M of the page history data structure determines the amount of history that

is kept to make prediction decisions, and that is sent to remote nodes along with the

ownership of the related page. Theoretically, a large value of M could improve the

prediction accuracy, because a greater amount of information is transmitted every

time a page history is transferred between two nodes. On the other hand, a smaller

history size is faster to transmit, but may not have enough information to deal with

some situations and could lead to wrong predictions.
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IV. PREFETCHING EXECUTION

When a prediction has been made for a page, prefetching actions are executed in

order to send the page to the next node that is supposed to make an access to

it. The specific prefetching actions to be taken depend on the underlying memory

consistency protocol used, as the objective is to send a copy of the page as if the

remote node had made a request for it.

The implementation described below considers a sequential-consistent protocol that

uses invalidation coherence, and sends three kind of messages: req messages (to

make page requests due to page faults), inv messages (to synchronuosly invalidate

remote copies) and large page messages (to send copies of one shared memory page).

At any given moment a page has a unique owner, and may be in one of three different

status: INVALID, RO and RW. The prefetching scheme considers two additional states:

PREFETCHED RO and PREFETCHED RW.

Different actions are taken if the prediction is for a read-only access or for a read-write

access.

IV.1 Read-only predictions

The algorithm for executing a read-only prediction sets the owner copy on READONLY

mode. The destination node is added to the copySet of the owner, and the copy is

sent.

Only one message is required and no local or remote invalidations are made, so no

additional page faults are incurred when executing a possibly unnecessary read-only
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READ

P1 P2

barrier

P1 P2

page

req

blocked

READ

page

(a) (b)

Figure IV.1 (a) RO prediction; (b) Normal execution

Prefetch_RO(dest):

setMode(READONLY);

addToCopySet(dest);

sendPage(dest);

Figure IV.2 Pseudocode executed by the sender on a prefetch

prediction. If the destination is correct, but the access is read-write, then the only

consequence is an additional inv message. If the access mode is correct, but the copy

is sent to an incorrect node, then the additional action is the unnecesary page sent.

If both the destination and the access mode are incorrect, the additional actions are

one inv message and one page message sent.

On the other hand, correct predictions hide the delay produced by blocking the

requesting node while the owner is found and the requested copy is sent as shown in

Figure IV.1.
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Prefetch_Recv(sender):

storeCopy();

setMode(PREFETCHED_RO);

setProbOwner(sender);

Figure IV.3 Pseudocode executed by the receiver on a prefetch

PageFault_RO(p):

if(p.status == PREFETCHED_RO || p.status == PREFETCHED_RW)

setMode(RO);

return;

else

sendRequest(RO);

Figure IV.4 Pseudocode executed by the receiver on a read-only page fault

IV.2 Read-write predictions

Read-write predictions are more intrusive in the state of the page. Every copy on

the copySet, as well as the local copy are invalidated, and the only valid copy is sent

to the destination node, as well as the page history and the ownership of the page.

The number of messages depends on the size of the copySet, but at least involves

one page message to send the valid copy to the new owner. The time needed to

invalidate the remote copies also increases when synchronous invalidations are used.

When a read-write prediction is sent to an incorrect node, at least one more page

message is necessary to send the valid copy to the correct node. If the access mode

was incorrect, then the inv messages sent are also unnecessary. If both access mode

and destination node are incorrect, then one additional page message is incurred.
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Figure IV.5 (a) RO prediction; (b) Normal execution

Prefetch_RW(dest):

setMode(INVALID);

invalidate(copySet);

sendPageHistory(dest);

sendPage(dest);

setProbOwner(dest);

Figure IV.6 Pseudocode executed by the sender on a prefetch

The worst case is when the correct node was the one that originally had the page

ownership, since the correct action would have been keeping the page and do not

send any message. The cost in this case is at least two additional page messages,

and all the inv messages if the access mode was also incorrect.

IV.3 Prefetching

Prefetching is done concurrently by the nodes when they have arrived to a barrier

and before leaving it. This ensures that no regular consistency message are being
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Prefetch_Recv(sender) PageFault_RW(p):

storeCopy(); if(p.status == PREFETCHED_RW)

setMode(PREFETCHED_RW); setMode(RW);

storeHistory(); return;

setProbOwner(localNode); else

sendRequest(p,RW);

Figure IV.7 Pseudocode executed by the receiver on a prefetch, and on a read-write

page fault

sent while predictions are made. The execution of no other action than prediction

and prefetching in this phase also decreases the time that nodes would block due to

interruptions if page faults could be generated.

Prefetching actions over one individual page should be mutually exclusive. This is

enforced by the property that the owner is the only one that can make predictions

about a page, and at any time there is only one owner for each page.

Upon reception of a prefetch message, the received copy is stored and the page

turns to PREFETCHED mode. In that state, the page copy is valid, but it is protected

against read and write operations, so it can be detected if an access to the page really

happens, and then validate the prediction. The page probOwner entry is updated

depending on the message received. If the prediction is read-only, then the probOwner

is the node that sent the copy. If the prediction is read-write, the probOwner is the

local node.
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IV.4 Correctness

A good prediction technique should detect when wrong predictions were made and

avoid repeating them. In history-based prefetching this is accomplished by the page

history update mechanism. The page history data structure records only actual ac-

cesses to a page. So, when a wrong prediction is made, the corresponding prefetching

action will not show up in the page history. At the next execution of the predictive

routine, the effect of the wrong prediction will not be found among the more recent

elements of the page history and the wrong prediction will not be repeated. This

also allows adaptation to different patterns of sharing memory.

This mechanism also permits to take account of wrong predictions, helping in the

evaluation of the runtime effectiveness of history-based prefetching. When the effec-

tiveness goes down below a defined threshold, prefetching can be stopped to avoid

degrading the performance of the application.

IV.5 Cost of predictions

The cost analysis for history-based prefetching can be done focussing in two aspects:

number of messages sent, and processor blocked time.

On successful predictions, each prefetching action effectively avoids one page fault

on the remote node, and the subsequent request message to the probable owner,

so at least one requesting message is avoided. However, in most executions wrong

predictions can be made, and each one of them generates more messages than if

the prediction had not been made, as was discussed in the implementation details
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for read-only and read-write prefetching. This makes that a even a small percent of

wrong predictions will generate more messages than an execution with no predictions

at all.

On the other hand, the advantage of history-based prefetching is that the time that

processors are blocked during execution phases is decreased even though more mes-

sages could be sent.

When one page access is correctly predicted not only the request message is avoided,

but the delay that is produced by the page fault and the time that the processor

has to wait for the remote request to be completed is also avoided, as shown in

Figures IV.1 and IV.5. This blocked time also depends on the workload that the

page owner may have before the request can be processed, and the time required to

find the real owner of the page, both of which are not relevant in prediction phases

as copies are directly sent to their destinations, and processors are not interrupted

from doing their computation.
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V. EXPERIMENTS

The experiments were executed on a platform of 8 Pentium IV processors, 256MB

RAM, running linux Fedora Core 1. All computers execute the applications over

DSM-PEPE (Meza, Campos and Ruz, 2003), a page-based software DSM system

designed to execute parallel applications over a shared-memory environment on mul-

ticomputers and different consistency protocols.

Tested applications are: LIFE, SHEAR, and GRAPH.

– LIFE is an implementation of Conway’s Game of Life (Gardner, 1970) on a

2048×2048 circular matrix, a cellular automaton that represents the evolution

of a population inside a grid. The paralellization is done through stripes. On

each iteration, each node computes a different stripe of the matrix. Processors

wait in a barrier before computing the next iteration. This is an example of a

regular application, where the order of read access is the same through all the

execution.

– SHEAR is an implementation of the shearsort algorithm (Sen, Scherson and

Shamir, 1986) to sort integers inside a 1024× 1024 matrix. The execution goes

through a fixed number of alternate row-phases and column-phases. In row-

phases, odd rows are sorted increasingly and even rows are sorted decreasingly.

In column-phases, all columns are sorted increasingly. At the end, the sorted

array can be read downwards, from left to right in odd rows, and right to left

in even rows. The paralellization is done through stripes. At every iteration,

each node works over a fixed set of consecutive rows, or consecutive columns.
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This application has a partially regular memory access behavior, as two sharing

patterns alternate in execution phases.

– GRAPH is a distributed single-source shortest-path search on a graph of N

vertexes on shared memory (Wilkinson and Allen, 1999). Each node is assigned

a fixed set of vertexes to evaluate. On the kth iteration, nodes computes the

shortest path from each vertex to a distance of k vertexes away, using the

information from their neighbors, if necessary. After N iterations, the weight

of the shortest-path to every node has been calculated. This application was

selected to show an irregular access pattern, where the information to read

depends on the particular path found on the graph.

V.1 Methodology

Each experiment was executed under a sequential-consistent protocol, with history-

based prefetching, and differente values for M , and compared to a normal execution

without any kind of prefetching. Statistics collected in each case include execution

time, locally-generated read-faults and write-faults, remote read-faults, remote write-

faults, barriers executed, prefetches done for read-only and read-write modes, and

correct prefetches detected. Also, the number and size of messages sent were taken

into account.

The metrics used to evaluate the efectiveness of the proposed technique are coverage

and hit ratio, as it has been used in previous related works (Pinto et al., 2003).

Coverage refers to the percentage of page faults which are eliminated by prefetching

pages in advance. Hit Ratio, or utilization is defined as the percentage of valid
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prefetches among total prefetches. A valid prefetch is a prefetch that successfully

avoids the generation of a page fault. Coverage and hit ratio are calculated as follows:

Coverage =
Valid Prefetches

Total Page Faults
, Hit Ratio =

Valid Prefetches

Total Prefetches

A technique that shows a high coverage avoids a high percentage of page faults. As

an example, prefetching all shared memory pages would achieve a high coverage, but

at the cost of a low hit ratio. On the other side, a technique could provide a high hit

ratio making only correct predictions, but covering only a low percentage of all page

faults. A good prefetching strategy should aim to get both a high coverage, and a

high hit ratio.

V.2 Results

Results obtained are shown in two stages for each application. In the first stage,

different values for M were tested, to find optimal values of coverage and hit ratio.

In the second stage, a fixed value M = 32 was used to find a detailed description of

the cost of the prediction strategy, in terms of page faults incurred and avoided, and

predictions made.

In both cases, the value D = 8 was used for the fixed size of the prediction window.

This value is based on the number of nodes where the applications were ran, based

on the assumption that the window size should be at least the number of active

processors in order to be able to reflect at least one action of each one of them.

Certainly, a further study is required to validate this assumption.

Results are presented in terms of the time taken by the system to complete the
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Figure V.1 Execution time, coverage and hit ratio for LIFE application

execution, including the time required to execute the prediction routine and the

prefetching actions; the average number of read and write-faults generated by each

node, and those received as remote requests; the average number of read-only and

read-write predictions issued; and, finally, the average number of messages sent by

each node and the amount of bytes transferred. Each parameter is compared to a

normal execution with neither prediction nor prefetching actions, and the difference

is shown below.

V.2.1 LIFE

LIFE is a case of an extremely regular application. The shared memory access pat-

tern induced by the matrix division alternates between reads and writes of different

nodes in a repetitive sequence along iterations. Pages present a migratory pattern,

in which every two iterations, page ownership changes from one node to another,

and then returns to the first one. This pattern is quite suitable for history-based

prefetching, since the sequence of page accesses always follows the same cycle.

This case shows one of the best benefits that history-based prefetching can achieve

in regular applications, as can be seen in Table V.1 obtaining a 23% of improvement
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Table V.1 Detailed results for LIFE application

LIFE 2048x2048 normal prediction DIFF %DIFF

Time (s) 45.215 34.712 10.503 23.23 %

Local PF-Read 12,981 2,259 10,722 82.59 %

Local PF-Write 12,784 2,045 10,739 84.01 %

Remote PF-Read 14,982 4,261 10,721 71.56 %

Remote PF-Write 37,120 5,077 32,043 86.32 %

Predictions RO 11,122

Predictions RW 10,867

Msg. SENT 116,501 85,213 31,288 26.86 %

Msg. SENT size 116,433,918 126,181,569 -9,747,536 -8.37 %

Coverage 83,30 %

Hit Ratio 97,60 %

in execution time. A regular access pattern allows a very high hit ratio, due to

repeateness of the pattern, making almost every prediction to be correct, and 83%

less page faults generated. The presence of a unique pattern also gives a high coverage

because prefetching can begin immediately when there is enough information to make

predictions. Hence, effective prefetching begins after D iterations.

This case also shows the benefit of a small size for the page history structure. Ex-

ecution time linearly increases as the history size grows, as seen in Figure V.1 On

the other hand, the efficiency of the predictions is not affected as coverage and hit

ratio remains the same. For history size values lower than 14, the techniques makes

no predictions. For values greater than 150, the execution time increases over the

no-prediction execution, but giving no improvement in the quality of the prediction.

This is due to the greater amount of history that has to be transmitted every time

the ownership of a page is transferred.
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Figure V.2 Execution time, coverage and hit ratio for SHEAR application

V.2.2 SHEAR

SHEAR is a case of a difficult application for this strategy: row-phases produce a

uniform page access per node due to the row-assignment, but column-phases produce

false sharing, since when sorting a column a node must access every page, and this

page must be written by every node in the same phase. This produces a multiple-

writer access pattern and an almost random order in the access sequence to a page,

since nodes must compete for the access to a page every time a column is sorted.

The execution gives little improvement in favour of history-based prefetching, as

seen on Table V.2. The number of write-faults increase due mostly to wrong read-

write predictions and the consequent additional page faults generated by the wrong

invalidations. In this case, the technique can not make much predictions since every

possible prediction made at the beggining of a column-phase has a great probability

of being wrong, and in the case that predictions could be right, at most one of the

Nnodes−1 write-faults can be avoided, producing a low coverage. Even in those little

cases, a 79% hit ratio is achieved, and a small benefit in page faults, and messages

sent is obtained. Performance is not dramatically harmed by the prefetching scheme,

even though more information is sent.
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Table V.2 Results for SHEAR application

SHEAR 1024x1024 normal prediction DIFF %DIFF

Time (s) 64.88 64.94 -0.06 -0.09 %

Local PF-Read 3,108 2,924 184 5.92 %

Local PF-Write 3,108 3,120 -12 -0.39 %

Remote PF-Read 14,680 14,036 644 4.39 %

Remote PF-Write 3,108 2,924 184 5.92 %

Predictions RO 0

Predictions RW 216

Msg. SENT 33,465 32,149 1,316 3.93 %

Msg. SENT size 28,253,004 29,628,908 -1,375,904 -4.87 %

Coverage 2,77 %

Hit Ratio 79,63 %

Figure V.2 shows that the SHEAR application is a case where few predictions can

be done, so the cost of searching for patterns through the page history in order

to make predictions, and the additional page faults generated because of wrong

predictions, begins to take importance. For small history size values, the execution

time is almost the same as in the no-prediction execution, while for bigger values

the execution time increases as a consequence of the page faults generated by wrong

read-write predictions, a higher number of entries in the page history structure, and

a bigger time taken to find patterns.

Coverage remains with a low value because only a little number of page faults are

successfully avoided. Inside that little number, however, the Hit Ratio is high enough

to show the accuracy of the predicting strategy and tends to stabilize as the page

history size increases.
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Figure V.3 Execution time, coverage and hit ratio for GRAPH application

V.2.3 GRAPH

GRAPH presents a case for a 1PMC pattern due to the node-to-page allocation.

In each iteration, nodes update the information of their vertexes regarding shortest

distances to other vertexes, writing on their pages and, in the next iteration, that

information is read by the other nodes to update their information on the next phase.

This way, for every page there is only one node that writes on it, and every other node

only reads from it, producing the one-producer multiple-consumers access pattern.

The benefits from the specialized detection of this pattern are presented in the re-

sults obtained, which can be seen in Table V.3 A 61% less execution time is the

consequence of a clear access pattern and a high hit ratio due to a regular behavior

and the prefetching actions defined. Also, a high coverage is obtained, elimating 87%

the page faults.

In this application, almost no page ownership is transferred among nodes because of

the 1PMC pattern. Each node makes read access to pages owned by remote nodes,

and writes only on locally owned pages. When page history size is increased the cost

associated to page history transfers is not relevant, as page history is seldom trans-
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Table V.3 Results for GRAPH application

GRAPH 128 vertex normal prediction DIFF %DIFF

Time (s) 39.16 15.03 24.13 61.61 %

Local PF-Read 17,791 275 17,516 98.45 %

Local PF-Write 2,558 2,228 330 12.90 %

Remote PF-Read 17,896 380 17,516 97.88 %

Remote PF-Write 18 18 0 0 %

Predictions RO 18,044

Predictions RW 330

Msg. SENT 72,242 72,769 -527 -0,73 %

Msg. SENT size 74,690,154 76,872,079 2,181,925 -2,92 %

Coverage 87,7 %

Hit Ratio 97,1 %

ferred, so the execution time only varies depending on the additional time required

to generate predictions. The results are shown in Figure V.3.

Coverage is not affected by the page history size, and hit ratio barely increases,

showing that the quality of the prediction is not affected by a bigger amount of

information available

V.3 Analysis

General analysis is done in terms of application performance and page faults gener-

ated, as well as network traffic, and history size.

Execution Time and Page Faults Two of the studied applications showed a gen-

eral decrease in execution time. This is closely related to the number of page faults
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produced. Applications that decrease their page faults due to prediction obtain a

benefit in execution time. This happens because processors that receive prefetched

copies will not generate page faults on that page, so no requesting message is sent to

other nodes, and they will not block to wait for answers. Latency generated by send-

ing messages, blocking and waiting is hidden by the prefetching actions previously

taken.

Experiments showed that not only the reduction of page faults leads to less execu-

tion time, but also the moment when pages are sent is also important. History-based

prefetching is executed in special prefetching phases, when nodes are not doing ap-

plication work. This is a gain in the sense that processors are not interrumped from

doing useful job, helping to hide latency by doing separate prefetching phases.

Messages sent In LIFE and SHEAR, the number of messages is smaller due to

the request messages avoided when a page fault occurs. The amount of bytes trans-

mitted increases as a consequence of the incorrect predictions made and the useless

pages sent in prefetching messages. In the case of GRAPH, the number of messages

increases slightly. The reason is that most of the messages sent are related to con-

firmation of correct read-only predictions, and in this application all the messages

sent are PREDICTED RO messages. There are no PREDICTED RW messages because all

read-write predictions made are for the actual page owner. Every correct read-only

prediction made involves two messages: a prefetching message and a confirmation

message. The confirmation messages are small in comparison to the prefetching

message, so the number of messages increases, but the number of bytes sent remains

small.
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History size The results show that the size of the page history does not signi-

ficatively increase the quality of the predictions made. Coverage and hit ratio are

generally not harmed by the storage of a small list of past access, providing that it is

big enough to allow a pattern to be found. Once again the fixed parameter D of the

window size, reflecting the number of nodes involved in the execution, has proved

to be useful. In most applications, predictions can be made with a page history size

being at least two times the window size used. A further study should prove this

conjecture.

Applications can achieve a better performance by looking only at a small list of

past accesses, rather than having bigger amounts or information. In all situations,

maintaining a complete history of events will lead to a poor performance, as the

time taken to transmit and search through the history overcomes the prediction

improvement.
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VI. FUTURE WORK

The prediction scheme used by history-based prefetching can be extended to be

used with other consistency protocols, and to improve other areas of distribute

shared memory. In this work, the technique was presented and implemented over

a sequential-consistent protocol, but the principles can be applied to other weaker

consistency protocols. An interesting topic of research the application of history-

based prefetching to a causal consistent protocol (Campos and Navarro, 2004). In

lock-driven protocols like entry consistency (Bershad and Zekauskas, 1991), this tech-

nique could be applied to predict the behavior of locks instead of pages and, thus,

update the pages needed by the remote node before it makes the lock request. An-

other lock-driven protocols like scope consistency (Iftode, Singh and Li, 1996), may

be improved by predicting the lock in advance.

It is also necessary to study the impact of the parameters used for the size of the the

prediction window used, to determine optimal values and improve predictions and

execution time. Our conjecture, based on the fixed size used in this work and the

results obtained, is that the history size should be at least two times bigger than the

window size, and probably not bigger.

Other improvements that can be made involve the pattern matching when searching

in the page history. Pattern matching could be improved by adding support to

detect similar patterns instead of exact matching. Support for other shared memory

patterns can also be added to improve the hit ratio of the predictions made.

A broader study of the flexibility of this technique to be used in some non-regular

application is still necessary to clearly define the family of applications that can be
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improved by history-based prefetching.



35

VII. CONCLUSIONS

This work presented history-based prefetching, a prediction/prefetching technique

that uses the recent history of individual shared memory pages to predict the next

access to a shared memory page, sending that page to the future requesting node

before it actually needs it. This way, page faults are avoided on the requesting node

and the latency of waiting for the updated copy of the page is reduced. Support

to detect some known page access patterns, like migratory, multiple-writer, and one

producer-multiple consumers is added in the predictive scheme. Experiments showed

that in applications where a regular access pattern is detected, it is possible to achieve

a high hit ratio for predictions.

Using a good prediction strategy, latency can effectively be hidden and performance

of the DSM applications can be greatly improved. Results for history-based prefetch-

ing show that sending pages in dedicated prefetching phases is better in terms of

elapsed ime and induced latency, than stopping the computation on page faults and

waiting for the requested pages to arrive, as happens in a non-prediction execution.

We have shown that history-based prefetching is an effective technique to improve

the performance of some applications that show a regular access pattern. Still, the

whole family of applications that can be benefitiated has to be determined, and it is

object of a further study.

Optimal parameters for the window size also have to be found, and the prediction

strategy must be fine-tuned. However the current results are encouraging, showing

that this work can be extended to a wider range of applications, due to the high

benefit in execution time obtained for two of the applications tested. Results for the
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third application indicates that the time used to calculate the predictions, even in the

case when little correct predictions are done, does not lead to a worse performance

than the non-prediction execution, showing that the prediction strategy has a low

overhead.

Results for the size of the page history structure show that the tested applications

achieve a better performance when the page history structure stores a small portion

of the most recent shared memory accesses made to each page. Large amounts of

information lead to a poor performance when the page ownership, and therefore, the

page history is repeatedly transferred among nodes, and has to be searched.

The quality of the prediction, measured in terms of coverage and hit ratio, is, in most

cases, barely improved by a bigger page history size. In the applications tested, a

small size of M provides a prediction efficiency almost as good as that obtained with

a large size.

In summary, we believe that history-based prefetching can be applied directly to ex-

istent DSM systems to improve their performance with applications showing regular

access patterns.
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