
On the Design and Implementation of a Portable

DSM System for Low-Cost Multicomputers

Federico Meza, Alvaro E. Campos, and Cristian Ruz

Departamento de Ciencia de la Computación
Pontificia Universidad Católica de Chile

Casilla 306 - Santiago 22 - CHILE
[fmeza,acampos,cruz]@ing.puc.cl

Abstract. Distributed shared memory systems provide an easy-to-pro-
gram parallel environment, to harness the available computing power of
PC networks. We present a layered architecture that allows a portable,
scalable, and low-cost implementation that runs on Linux and Windows.
Only a few, low-level, modules are operating-system dependent; synchro-
nization, distributed memory and consistency management, as well as
multithreading are mostly independent. Preliminary results are encour-
aging; the Linux port performed well, showing high efficiency.

Keywords. Distributed shared memory, parallel programming, parallel
systems, distributed systems, multicomputers.

1 Introduction

Parallel computing aims to reduce execution time for applications involving
high computational requirements. This reduction is accomplished by distribut-
ing work among different processing units that operate in a simultaneous but
coordinated way. In a multiprocessor, processing units have access to a com-
mon memory; processes communicate through read and write operations on the
shared memory. On the other hand, multicomputers have a distributed memory,
and communication is achieved by sending and receiving messages; programs
request the shared data they need and send the data requested to them.

Multiprocessors are expensive and offer low scalability, but it is easy to write
programs for them due to their simple semantics for sharing data. Multicomput-
ers are built using conventional hardware and show better scalability, but com-
munication is slow and programming is harder, since programs must partition
the shared data and manage communication between the distributed memories.

Distributed Shared Memory (DSM) systems provide the scalability and low
cost of a multicomputer, and the ease of programming of a shared-memory mul-
tiprocessor [1]. They offer a virtual shared memory space on top of a distributed-
memory multicomputer. This virtual space enables programs on different com-
puters to share memory, even though the computers physically do not share
memory at all. All the communication involved is accomplished by the underlying
DSM system. Despite the overhead introduced by the DSM layer, applications
still perform within acceptable bounds [2].

V. Kumar et al. (Eds.): ICCSA 2003, LNCS 2667, pp. 967–976, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



968 F. Meza, A.E. Campos, and C. Ruz

We are interested in DSM systems that are implemented exclusively at the
software level, excluding those systems that require special network or caching
hardware. Some software DSM systems may require modifying the compiler to
generate sharing and coherence code, specially variable-based and object-based
systems. These systems are not considered in this study because they lack porta-
bility. We focus on systems supported exclusively by user-level software, using
the virtual-memory management primitives of the operating system [3]. As a
consequence, sharing granularity is handled at the page level.

In this paper, we outline the key issues involved in the design and implementa-
tion of a portable DSM system that runs on top of Linux and Windows. Special
attention is given to the operating-system-independent aspects of the design.
We claim that using a layered architecture it is possible to reduce the operating-
system dependency to a minimum. We present DSM-PEPE, a DSM system aimed
to use low-cost hardware and conventional networks to provide a distributed par-
allel environment. Our system conforms a scalable, low-cost, distributed parallel
machine that executes programs with shared-memory semantics. A few modules
had to be rewritten, but most of the code remained the same between the dif-
ferent platforms. Preliminary results obtained from executing parallel programs
proved the feasibility of DSM-PEPE as a parallel machine.

2 Design Issues

A software, page-based DSM system allows a collection of independent comput-
ers to share a single, paged, virtual address space. There are several issues that
must be considered when designing such a DSM system. Some of them are par-
ticular to the underlying operating system, but most are platform independent.

In this paper, we show the design and implementation of a DSM system from
this perspective. Modules are grouped in layers, in such a way that operating-
system dependency is reduced. Our goal is to obtain a system that can be ported
easily from one operating system to another, on top of the same hardware.

2.1 Pages and Consistency

Pages are usually cached on several nodes, in order to increase performance. This
replication introduces a coherence problem that is managed by a consistency pro-
tocol enforcing a particular consistency model. The consistency model states the
memory behavior in the presence of conflicting accesses across processors [4].
Relaxing the model allows better performance, under certain programming re-
strictions [5].

Consistency protocols must be kept separate from the page-management
module. Otherwise, each time a protocol is included, it would be necessary to
write page-management primitives for it. Some consistency protocols rely exclu-
sively on the triggering of page-fault events, for example, sequential-consistency
protocols. Protocols for relaxed consistency models usually take consistency ac-
tions when synchronization operations occur, for example, protocols for release
and entry consistency.



On the Design and Implementation of a Portable DSM System 969

Implementing a sequential-consistency protocol involves writing handlers for
page-fault events on read and write operations, and for serving requests from
a remote processor. For example, a write fault triggers a local event that is
managed by the local handler. In one approach, the handler obtains an up-to-
date version of the page, and instructs the other processors to invalidate any
cached copy. Invalidation notices as well as the request for the page are handled
by the remote handler. Read faults produce similar scenarios.

Sharing granularity affects system performance [6]. Multiwriter protocols re-
duce the impact of false sharing on performance when page granularity is used [7],
but they are difficult to implement. The simplest approach is to allow false shar-
ing and to use an invalidation protocol as described above.

Page management is accomplished through the virtual-memory interface of
the operating system. The system must be capable of changing the status of vir-
tual pages in order to make them valid or invalid, as well as read-only or writable.
A small set of operating-system-independent primitives must be available to the
upper levels of the system, in order to make high-level layers portable.

Exception handling allows the DSM system to catch access faults to pages
that require consistency management. Application programs run guarded by an
exception handler. Each time a page fault occurs, the DSM system evaluates the
reasons and takes the necessary actions to resume the program.

2.2 Underlying Message Passing

In a multicomputer, processors must communicate through message passing.
It is possible to use PVM or a user-level library based on MPI, to avoid the
use of low-level socket communication. When using sockets, it is desirable to
hide operating-system dependencies introducing a higher-level layer. Hence, code
built on top of this new layer can be used across platforms.

DSM systems exchange messages of two types. First, consistency-related mes-
sages, controlled by the consistency protocol. Second, synchronization-related
messages to implement distributed locks and barriers. All data could be directed
through a single socket, but this may produce interference between the two types
of messages. A more portable approach involves the use of an abstraction built
on top of sockets: a post-office object, which uses an exclusive socket to com-
municate with its peers. A few primitives are available through the post office,
allowing sending and receiving point-to-point messages, as well as broadcasting.

Communication through sockets can be connectionless or connection ori-
ented. Connectionless sockets are efficient for scattered communication. DSM
systems show high rates of message exchange. Hence, connection-oriented sock-
ets seem to be more suitable. However, connection setup introduces unwanted
overhead; thus, it is desirable to keep connections open.

2.3 Application View and Memory Regions

The DSM approach is more attractive than message passing to write applications
for a multicomputer, since most programmers find shared memory easier to use.



970 F. Meza, A.E. Campos, and C. Ruz

To sustain this fact, applications must see the global memory space, as they see
the shared memory in a multiprocessor. The use of memory pointers is an easily
understood and portable interface. Programmers are familiar with the use of
dynamically allocated memory. This approach is suitable for implementing the
DSM system, since addresses stored in pointers can be easily mapped from the
process space to the system global space.

It is convenient to group related variables in regions. A region is a high-level
abstraction used to provide flexibility to the application programmer. Memory
allocated from a single region is managed by the same consistency protocol. How-
ever, pages contained in different regions can be handled by different protocols.
When the consistency protocol does not match the data-access pattern of an ap-
plication, performance can be degraded. It is desirable to have a set of protocols
with particular characteristics and be able to use them as needed. Sometimes, it
may be necessary to use more than one protocol in the same application. This
facility can be useful when the access pattern of an application changes dur-
ing its execution. Hence, it is possible to match dynamically these data-access
patterns. In general, the use of regions allows specifying extra information for
portions of the address space. For instance, the entry consistency model requires
that programmers associate each shared variable with a lock [8]. This association
can be done by grouping together, in the same region, all related variables.

2.4 Multithreading and Migration

Multithreading in DSM systems has been widely studied [9,10,11]. Application-
level multithreading reduces remote latency in DSM systems, by overlapping
communication and computation [12]. Besides, multithreading helps to enhance
program structure.

Threads can exist at kernel level or at user level. User-level threads are
portable, flexible, and can be implemented efficiently. Only the thread-switching
facility is actually dependent on the underlying hardware and operating-system
platforms. In a DSM system there is a single address space. Also, there must
be a single global thread space, and threads must be unique across processors.
Synchronization should coordinate threads no matter where they are running.

Thread migration is another topic widely studied. In general, process mi-
gration allows load balancing and dynamic reconfiguration. In a DSM system,
thread migration enhances data locality, by moving threads to the data they
need [9,10]. This locality reduces consistency-related communication. However,
it is necessary to implement an effective migration policy. In a DSM system,
the primary goal is not load balancing, but to enhance data locality. In order to
do so, data-access patterns of applications must be accounted for dynamically.
Some DSM systems allow multithreading and thread migration at the applica-
tion level, for example, Millipede [13,10] and DSM-Threads [11].

Implementing thread migration requires considering several issues. We focus
our study on computers having the same hardware architecture, running the
same operating system. Hence, some problems do not arise, for example, data
and address representation. Data-addresses correspondence is not a problem



On the Design and Implementation of a Portable DSM System 971

since shared data is stored in the global shared-memory space. Code-addresses
correspondence is easily handled, by having all threads start at all processors,
even if they are actually running in only one of them. Each running thread has
a suspended peer in each of the other processors, waiting to receive it in the
event of a migration. Stack migration can be easily accomplished, since threads
are implemented at the user level. The threads library provides functionality to
suspend a thread and recover its stack, as well as to resume a suspended thread
with an updated stack.

Application
layer

Hardware
layer

Virtual−Memory
Management

Exception
Handling

Thread
Switching

VIRTUAL MEMORYNETWORK

Thread
Lock

Thread
Barrier

Lock
Interprocessor Interprocessor

Barrier

DSMregion

PageTable

Page

Consistency
Protocol

Threads
Library

Thread

ThreadList

PostOffice
Abstraction

USER−LEVEL APPLICATION

Synchronization
API API

DSM Multithreading
API

Sockets
OS−Level

Sockets
High−Level

DSM layer
User−level

DSM layer
OS−level

Fig. 1. DSM system architecture

2.5 Synchronization

Synchronization is a key issue when programming a system with shared-memory
semantics. At least two kinds of synchronization primitives are required: locks,
to provide mutual exclusion, and barriers, to control interprocess progress.

In a multithreaded DSM environment, there are two levels of synchronization.
At the bottom level, interprocessor synchronization allows processors to coordi-
nate with each other. At the top level, and visible to the application program,
thread synchronization allows global threads from the application program to
coordinate with each other.



972 F. Meza, A.E. Campos, and C. Ruz

Thread synchronization can be built on top of interprocessor synchronization.
For example, thread barriers must block arriving threads until all threads from
all processors have arrived to the barrier. One possible implementation provides
local barriers within each processor. When all local threads have arrived, the
processor notifies a global interprocessor barrier about the arrival. The global
barrier blocks the processor until all processors have notified their arrival. A
release notice from the global barrier triggers the release of all blocked local
threads in each processor. Locks can be implemented in a similar way, using a
global lock and local locks within each processor.

2.6 Layered Architecture

Fig. 1 shows the suggested layered architecture for a portable DSM system.
Interaction is accomplished through three Application Programming Interfaces
(API). The synchronization API provides lock and barrier synchronization to
global threads. These primitives can be implemented on top of the interproces-
sor synchronization functionality. The DSM API allows applications to create
shared-memory regions and to allocate memory from them. Lower-layer mod-
ules implement page functionality and coherence. The consistency protocol is
kept apart from all other modules, making it independent, easily replaceable,
and allowing the coexistence of different protocols on the same user applica-
tion. The multithreading API is implemented on top of a global threads layer,
which, in turn, is implemented on top of a user-level threads library. Only the
thread-switching component is operating-system dependent.

Being a distributed system, most of the functionality relies on the commu-
nication modules. The post-office abstraction hides communication details from
upper-level layers. Portions of the socket layers need to be rewritten for each
operating system.

3 Implementation Issues

Most of the DSM-system components are operating-system independent. A few
modules, namely, page management, exception handling, message passing, and
thread switching, are dependent in some degree on the underlying platform. Our
system is portable in the sense that only certain portions of these components
are different between the ports for Linux and Windows.

3.1 Portable Modules

Page management is the core of the DSM system. Application programs use
the shared memory through regions. Consistency of a region is managed by
a consistency protocol, specified when the region is created. The size of the
region defines the number of pages it contains. The page object links a memory
page to its region and to the consistency protocol. Consistency for a page is
ensured by a specialized thread. Hence, message-handling threads are not blocked



On the Design and Implementation of a Portable DSM System 973

unnecessarily. The DSM API includes functions to create regions, specifying its
size and consistency protocol, and to allocate memory from a region, specifying
the amount of memory needed.

Consistency protocols are implemented taking the page class as their basis.
A new subclass must be derived from the page class, and handlers for the con-
sistency events must be coded. Any additional data that the protocol may need
is defined within the subclass. For example, a sequential-consistency protocol
may require a hint of the probable owner of the page; this information would be
stored in the page subclass.

Interprocessor barriers use a centralized coordinator. The coordinator re-
ceives messages from all processors arriving at the barrier, and broadcasts a
release notice once it has received all of them. The implementation of interpro-
cessor locks is distributed. Each node keeps a hint of the probable holder of the
lock, and sends a request when it wants to acquire the lock. The lock holder
queues the requests and delivers the queue when releasing the lock. Once the
lock is released and sent to another processor, the former holder forwards any
request it receives to the node to which it relinquished the lock.

Barriers at the thread level are implemented on top of interprocessor barriers.
Thread locks are implemented using local queues and alien threads. An alien
thread stands for a remote thread requesting the lock from another processor.
The alien thread waits at the queue of the holder processor; once it gets the lock,
it sends the lock to the remote thread it represents. When the lock migrates, the
queue is transferred with it.

Threads are global entities, implemented on top of a user-level library [14]. A
pool of threads is created in every processor when the application program starts
running. All threads start execution and block until they are needed. When the
program forks a thread to execute some particular function, the thread is setup
in all of the processors atomically, although it is run only at the location that did
the fork. The other instances stay suspended, waiting for the thread to migrate
in. Each thread is given a unique system-wide identifier, which can be used to
join with other threads. Thread migration is supported through the suspended
state; only suspended threads can migrate. The migration facility extracts the
thread state, including its stack, and sends it to the target processor. Once there,
the thread is resumed in the same state in which it was when it was suspended.

Communication is done exclusively using the post-office abstraction. Two
global post offices exist in each system node. The first is used exclusively for
consistency-related messages. The second is used for the exchange of synchroni-
zation-related messages. Reception of messages in each post office is handled by
an independent thread.

3.2 Non-portable Modules

Page management and exception handling are highly dependent on the operating
system underneath. For page management, there are a few primitives that can
be abstracted to implement the DSM system on top of them. Basically, we need
to be able to set pages as invalid, as well as to set page protection to read-only



974 F. Meza, A.E. Campos, and C. Ruz

or read-write. In Linux this page manipulation is possible using the mprotect
system call. Virtual-address correspondence is accomplished manipulating the
heap. In Windows, we must use some functions from the virtual-memory inter-
face: VirtualAlloc, VirtualQuery and VirtualProtect. Virtual-address cor-
respondence is guaranteed using memory-mapped files.

Exception handling is required to catch faulting accesses to memory, in order
to handle those faults related to the DSM management. Application programs
run protected by an exception handler responsible for interrupt interception.
Windows provides a structured mechanism which is suitable for this purpose. It
is possible to protect any code, in particular application code, with a handler
for virtual memory exceptions. In Linux there is no such a structured way of
handling exceptions, but we can use the Unix signal-handling mechanism instead.
In particular, it is possible to install a handler for the SIGSEGV signal, raised on
faulting memory accesses; the signal system call fulfills this purpose.

Communication is not isolated from portability issues. Although socket com-
munication is relatively high level, Windows implementation of sockets differs
from Linux and Unix implementations. These differences must be hidden in a
software layer that provides a portable interface to the upper layers.

Finally, thread switching is the only component of the thread library that is
not portable across operating systems. A few lines of assembly code accomplish
this task, and had to be written for each operating system.

4 Preliminary Results

DSM-PEPE runs on top of two of the most popular operating systems nowadays.
We succeeded in implementing a system that works on both platforms with
minor changes. This section presents results from executing a simple parallel
application on both systems, and a comparison of performance between them.
Also, we show speedups relative to a sequential, equivalent program.

The testbed is a set of up to 16 personal computers with the same config-
uration: Intel Pentium 4 running at 1.66 GHz, 256 MB RAM, and 512 KB L2
cache; connections are switched at 100 Mbps. We used both Windows 2000 and
RedHat Linux 8.0.

The application chosen is a simple integer square-matrix multiplication. Two
different matrix sizes were used: 1024 × 1024 and 2048 × 2048. No special op-
timization was done. Computation is distributed splitting the result matrix in
slices of the same size, using a striped approach. Each processor is responsible
for computing the values in the slice assigned to it. This scheme produces a
highly parallel task; source matrices are accessed only for reading, and there are
no race conditions, since the writing of the result is distributed among the pro-
cessors. The turnaround time of the program was measured using 2, 4, 8, and 16
processors, for both matrix sizes. Also, a sequential version of the program was
run in a single processor, in order to calculate speedups for the parallel versions.
Measurements were taken five times to produce an average value; variance was
negligible.



On the Design and Implementation of a Portable DSM System 975

1.0

3.0

5.0

7.0

9.0

11.0

2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of Processors

Linux 2048

�

�

�

�

�

Linux 1024

�

�

�

�

�

Windows 2048

�
�

� �

�
Windows 1024

� � � �

�

Fig. 2. Speedup for two problem sizes running on Linux and Windows

Fig. 2 shows a comparison for the 16 experiments performed. Speedups are
clearly higher for the application running on the Linux version of the system,
producing a high degree of efficiency. Since most of the code is identical across
versions, as well as is the hardware platform, the difference is due to operating-
system-dependent components of the system. Preliminary evaluation shows that
socket communication is the major responsible for the lower performance on
Windows. Moreover, exception handling and virtual memory management mech-
anisms are at a higher level in Windows than in Linux, producing additional
overhead in the Windows version of the system.

5 Concluding Remarks

Portability is a key issue when designing and implementing a software DSM sys-
tem. The layered design of DSM-PEPE allowed us to reuse most of the code for both
the Linux and Windows versions of the system. Only those components respon-
sible for low-level socket communication, exception handling, virtual-memory
management, and thread switching needed to be rewritten across platforms.

System maintenance is easy, because of the modular design. A specially de-
signed interface for the consistency-related events, allows to add new consistency
protocols without affecting other parts of the system.

Our preliminary results confirm the potential of a software DSM system as
a parallel computing environment. Programming for the system is easy, and the
cost of building the virtual machine is low. In the future, we expect to perform an
extensive set of experiments using different applications extracted from known
benchmark suites.



976 F. Meza, A.E. Campos, and C. Ruz

Slightly heterogeneous distributed systems can be built using DSM-PEPE, that
is, systems composed of computers running different operating systems on top
of the same hardware. Hardware homogeneity allows an easy exchange of data
between machines running different operating systems. An open area of study
involves thread migration in such a slightly heterogeneous system.

Thread migration presents several problems in the context of relaxed consis-
tency protocols. Currently, we are studying the relation between relaxed memory
protocols, thread migration, and the data-access patterns of the programs.

Acknowledgements

The first author acknowledges the support of Fondecyt, under Grant 2990074,
and of Universidad de Talca.

References

1. Li, K., Hudak, P.: Memory coherence in shared virtual memory systems. ACM
Transactions on Computer Systems 7 (1989) 321–359

2. Lu, H., Dwarkadas, S., Cox, A.L., Zwaenepoel, W.: Quantifying the performance
differences between PVM and TreadMarks. Journal of Parallel and Distributed
Computing 43 (1997) 65–78

3. Lo, V.: Operating systems enhancements for distributed shared memory. Advances
in Computers 39 (1994) 191–237

4. Adve, S., Gharachorloo, K.: Shared memory consistency models: A tutorial. Tech-
nical Report ECE-9512, Rice University, Houston, TX (USA) (1995)

5. Adve, S., Hill, M.: Weak ordering: A new definition. In: 17th Annual International
Symposium on Computer Architecture, ACM. (1990) 2–14

6. Torrellas, J., Lam, M.S., Hennessy, J.L.: False sharing and spatial locality in
multiprocessor caches. IEEE Transactions on Computers 43 (1994) 651–663

7. Keleher, P.J.: The relative importance of concurrent writers and weak consistency
models. In: 16th International Conference on Distributed Computing Systems.
(1996) 91–98

8. Bershad, B.N., Zekauskas, M.J.: Midway: Shared memory parallel programming
with entry consistency for distributed memory multiprocessors. Technical Report
CMU-CS-91-170, Carnegie Mellon University, Pittsburgh, PA (USA) (1991)

9. Thitikamol, K., Keleher, P.: Thread migration and communication minimization
in DSM systems (invited paper). Proceedings of the IEEE 87 (1999) 487–497

10. Itzkovitz, A., Schuster, A., Shalev, L.: Thread migration and its applications in
distributed shared memory systems. Journal of Systems and Software 42 (1998)
71–87

11. Mueller, F.: Distributed shared-memory threads: DSM-Threads. In: Workshop on
Run-Time Systems for Parallel Programming. (1997) 31–40

12. Thitikamol, K., Keleher, P.: Per-node multithreading and remote latency. IEEE
Transactions on Computers 47 (1998) 414–426

13. Friedman, R., Goldin, M., Itzkovitz, A., Schuster, A.: Millipede: Easy parallel
programming in available distributed environments. Software: Practice and Expe-
rience 27 (1997) 929–965

14. Cormack, G.V.: A micro-kernel for concurrency in C. Software—Practice & Ex-
perience 18 (1988) 485–491


	Introduction
	Design Issues
	Pages and Consistency
	Underlying Message Passing
	Application View and Memory Regions
	Multithreading and Migration
	Synchronization
	Layered Architecture

	Implementation Issues
	Portable Modules
	Non-portable Modules

	Preliminary Results
	Concluding Remarks

