
The Thread Migration Mechanism of

DSM-PEPE

Federico Meza1 and Cristian Ruz2

1 Depto. de Ciencia de la Computación, Universidad de Talca
Camino Los Niches Km. 1, Curicó – CHILE

fmeza@utalca.cl
2 Escuela de Ingenieŕıa Informática, Universidad Diego Portales

Ejército 441, Santiago – CHILE
cruz@inf.udp.cl

Abstract. In this paper we present the thread migration mechanism of
DSM-PEPE, a multithreaded distributed shared memory system. DSM
systems like DSM-PEPE provide a parallel environment to harness the
available computing power of computer networks. DSM systems offer a
virtual shared memory space on top of a distributed-memory multicom-
puter, featuring the scalability and low cost of a multicomputer, and the
ease of programming of a shared-memory multiprocessor.
DSM systems rely on data migration to make data available to running
threads. The thread migration mechanism of DSM-PEPE was designed
as an alternative to this data migration paradigm. Threads are allowed
to migrate from one node to another, as needed by the computation. We
show by experimentation the feasibility of the thread migration mecha-
nism of DSM-PEPE as an alternative to improve application perfomance
by enhancing spatial locality.

Keywords. Thread migration, distributed shared memory, multithread-
ing, spatial locality.

1 Introduction

A large portion of the execution time of distributed applications is devoted to
access remote data. Multithreading in a distributed system helps to reduce the
impact of the latency produced by message exchange, by overlapping commu-
nication and computation [1]. While waiting for a long-latency operation, the
processor allows the progress of threads other than the one being blocked.

Thread migration has been proposed as a mechanism to improve performance
by enhancing data locality [2, 3]. The main idea is to move threads closer to the
data they need, that is, to gather at the same processor those threads using the
data stored in that location, instead of moving the data to the processors where
the threads are running. However, there is a tradeoff between the mechanisms
used to increase data locality and load balance. The former aims to reduce

Federico Meza was supported by Fondecyt under grant 2990074.



interprocessor communication while the latter attempts to increase utilization
of the processors and hence the level of parallelism. If there are no restrictions,
a system would exhibit high data locality at the cost of poor utilization of the
processors.

In this paper we present the thread migration mechanism of DSM-PEPE,
a DSM system with support for multithreading at the user-level. We show the
potential of thread migration as an alternative to data migration to improve
application performance by exploiting data locality. In particular, we present a
series of experiments using an application with an access pattern that exhibits
some degree of spatial locality. The application that uses our thread migration
mechanism performed better than the original parallel application used for com-
parison and showed more regular speedup patterns.

The rest of the document is structured as follows. Section 2 deals with the
main issues involved in the implementation of multithreading and thread migra-
tion. In Section 3, the thread migration mechanism of DSM-PEPE is presented.
Details about the experiments are covered in Section 4. Section 5 summarizes
other works related to thread migration. Finally, Section 6 presents some con-
cluding remarks and future lines of research.

2 Multithreading and Thread Migration Issues

Multithreading can be implemented at kernel level or at user level. In the former,
system calls are issued for thread creation and context switches. The kernel is
highly involved in thread management; thus, this approach lacks portability.
User-level threads are more portable and easier to manage; the context switch has
a lower cost because the operating system is not aware of the threads. However,
when a user-level thread is blocked, it could block the entire process, reducing
the benefits of the use of multithreading. Some mechanism must be implemented
to avoid this drawback.

Thread migration involves the suspension of a thread at some point of its
execution. While suspended, it is copied or moved to another processor, and re-
sumed at the new location at the same point where its execution was suspended.
The resumed thread must not be aware of the migration being carried out. To
migrate a thread, all data defining the thread state must be copied, that is, its
stack and the values stored in the processor registers.

Special attention must be given to the migration of the thread stack. It
can contain local variables, activation registers, and pointers that could refer
to memory addresses inside or outside the stack. If the stack is relocated at a
different address in the destination processor, pointers to stack addresses would
be outdated. Also, pointers to memory addresses that are not part of the DSM
space would point to invalid addresses in the target processor.

We are interested in thread migration in hardware homogeneous systems.
Migration in heterogeneous environments introduces additional issues that must
be considered and that are beyond the scope of this work.



3 DSM-PEPE Thread Migration Mechanism

Threads in DSM-PEPE are provided through a user-level library. A kernel timer
is used to implement preemption and avoid blocking the entire process when a
thread becomes blocked. The library runs on several processor arquitectures and
operating systems. In particular, DSM-PEPE runs on top of MS-Windows and
GNU/Linux, both on the Intel family of processors. Applications in DSM-PEPE
follow a SPMD –Single Program Multiple Data– model [4].

A data structure called thread is used to store the information required to
administer the threads. First, the library stores in this structure information
about registers (e.g., the stack pointer), administration data (e.g., the thread
id) and a pointer to the function that the thread is executing. Next, a fixed-size
thread stack is stored, followed by the arguments passed to the thread function.
Figure 1 shows the fields of the structure.

...

tid

thread

sp

stack

args

sp

thread info
func

Fig. 1. DSM-PEPE thread structure

In DSM-PEPE, a function from the API allows an application-level thread
to migrate to a different location by providing the thread id and the target
processor id. Migration is prohibited to threads holding system resources, like
files or locks, to ease resource management. In order to ensure coherence when
the thread moves to another location, thread data must be stored in the DSM
space or in thread local variables which reside in the thread stack.

The migration mechanism is supported by the concept of replicated threads.
Each application-level thread is replicated at each processor when created. How-
ever, the thread is activated only at the forking processor while it remains sus-
pended at the rest of the processors. In this way, we guarantee that the thread



stack is located at the same address at each processor, avoiding the problem of
outdated references to variables within the stack during a migration. Besides the
ready queue, containing the threads that are currently waiting for the processor
to be assigned, a suspended queue is used for the threads that are about to mi-
grate and the thread replicas that wait for a migration to come in. Figure 2 shows
how a thread running at a processor is migrated to another location. Thread t1

at P1 is migrated to P2 where it resumes execution on the suspended replicated
thread that was created at P2 when t1 was originally forked. The thread that
was running t1 on P1 now became suspended.

t1 t2 t3t1 t2 t3t2 t3 t1 t2 t3 t1 t2 t3 t1 t2 t3

S S S S S S S

t1

P2 P1 P2 P3P1

S S S S

P3

migrate(t1,P2)
S

Fig. 2. Thread suspension and activation during a migration

Migration is accomplished by sending a message containing the thread struc-
ture to the target processor. The size of this message will depend on the size of
the stack assigned to the thread during creation. Usually the thread stack will
be 1 KB long, but in special circumstances a larger stack will be needed. This is
the case of the application shown in Section 4 where we store a large data struc-
ture –up to 32 KB– in the stack of each thread. Upon reception of a migration
message, the system on the target processor copies the received structure to the
suspended replicated thread. This is accomplished by copying the stack to the
same address where it was located at the originating processor.

4 Experiments and Results

In order to evaluate the effectiveness of the thread migration mechanism to
improve performance by exploiting data locality, we ran a series of experiments
with an application whose memory access pattern exhibits certain degree of
spatial locality.

The application selected is 2D N-body, a simulation of the evolution of a
system of n bodies or particles interacting under the influence of gravitational
forces on a two-dimensional space. The force exerted on each body arises due to
its interaction with all the other bodies in the system. Thus, at each step, n− 1
forces must be computed for each of the N particles. The computation needed
grows as n2. This application is refered to as Sequential N-body.

Parallelization was accomplished by distributing computation among 4 pro-
cessors. Processor P0 initializes an array on distributed shared memory con-
taining the mass, initial coordinates and initial velocity for all particles in the
system. At each step, each processor is responsible for the computation of the



new coordinates and velocity of 1

4
of the total particles. To do this, the proces-

sor must read mass and coordinates data for all the particles in the system. The
DSM system provides each process with data updated on other processors using
the sequential consistency protocol. Barriers are used to synchronize progress.
To reduce the false sharing induced by storing shared and not-shared data on
the same array, a second array is used to store velocities and force accumula-
tors. Hence, the array on DSM actually stores only truly-shared data: mass and
coordinates. This application is refered to as Parallel N-body.

Thread migration was introduced in order to exploit data locality. At each
step, each processor updates data for its own particles and reads data from other
particles stored on the remaining processors. Local versus remote data exhibits
a 1

4
ratio at each processor. Hence, instead of making data from each processor

to be updated by the consistency protocol on the remaining processors, each
processor sends a migratory thread to accomplish computation at the processor
where the data is stored. Threads store in their stacks the accumulators needed
by computation, which are moved transparently as the threads migrate. This
application is refered to as Migratory Threads N-body.

Four different problem sizes were used in the experiments: 214 = 16384,
215 = 32768, 216 = 65536, and 217 = 131072 particles. Each application was run
to complete 1, 2, and 4 steps of computation, in order to lessen the overhead
produced by the initial data distribution during the first iteration.

The testbed is composed of 4 computers with the same configuration: Intel
Pentium IV processors running at 3 GHz, 256 MB RAM, 16 KB L1 cache, 2 MB
L2 cache. The network link is an Ethernet switched at 100 Mbps. The operating
system is GNU/Linux, kernel 2.6.15-23 (Ubuntu 6.06 LTS).

 0

 1000

 2000

 3000

 4000

 5000

2^172^162^152^14

E
xe

c 
T

im
e 

(s
)

Problem Size (particles)

1 Step
2 Step
3 Step

Fig. 3. Sequential N-body: Execution time grows as n
2



 0

 1000

 2000

 3000

 4000

 5000

421

E
xe

c 
T

im
e 

(s
)

Steps

Seq
Par
Mig

Fig. 4. Parallel and Migratory-Threads outperform Sequential N-body with speedups
3.77 and 3.99, respectively

Figure 3 shows execution time of the sequential application as problem size
increases. It can be seen that execution time grows as n2. Figure 4 compares
execution time for the three applications using the largest problem size: 217

particles. Both the parallel and the migratory-threads applications outperform
the sequential application. The speedup for the parallel program was 3.77, while
for the migratory-threads program it was 3.99. Results for the remaining problem
sizes show the same behavior.

Figure 5 shows the speedups for both, the parallel and the migratory-threads
based applications, for 1, 2 and 4 computation steps. Speedups for the application
using thread migration are clearly higher and show a regular trend, improving as
the number of computational steps increases. This is due to the ad-hoc migration
strategy used to solve the problem that improves data locality, reducing the
number of page faults and the total data exchanged. When a thread migrates to
another processor it carries its acummulators and uses only local data to perform
computation. Results for the largest data set are better due to the higher level
of parallelism with respect to the amount of data exchanged, that is, larger data
sets involve coarser computation granularity.

The parallel application involves a large number of small-size messages, most
of them due to memory consistency actions. The largest of these messages is a
4 KB message sent as a reply to a remote page fault. On the other hand, the
migratory application involves less messages but half of them of a large size.

Table 1 shows the time involved in sending and delivering a message of dif-
ferent sizes, as measured in our testbed. Table 2 shows the time involved in
migrating a thread using two different stack sizes, as measured in our testbed.
It can be seen that the time involved in a thread migration is sligthly higher



 3

 3.2

 3.4

 3.6

 3.8

 4

4 Steps2 Steps1 Step

S
pe

ed
up

Parallel Application

Par 2^14
Par 2^15
Par 2^16
Par 2^17

 3

 3.2

 3.4

 3.6

 3.8

 4

4 Steps2 Steps1 Step

S
pe

ed
up

Migratory-Threads Application

Mig 2^14
Mig 2^15
Mig 2^16
Mig 2^17

Fig. 5. Speedup for the Parallel and Migratory-Threads Applications



than the time needed to send a message of the same size. This is the expected
behavior because the migration involves copying the stack in the originating and
destination processors and some additional actions. Nevertheless, as consistency
actions involve more than a single message (for example, to invalidate remote
copies), it could be expected that an application that relies on migration to avoid
page faults performs better and sends fewer messages.

Table 1. Time involved in message transmission

Size Time
(KB) (µsecs)

≈ 0 66

4 514

32 2971

Table 2. Time involved in thread migration

Stack size Time
(KB) (µsecs)

4 547

32 3445

For the largest problem size –217 particles– and 4 steps of computation, the
parallel application exchaged 47790 messages for a total of 49, 75 MB, while the
migratory application exchanged only 4302 messages for a total of 40, 78 MB.
Of the total messages exchanged in the parallel application, 26% are page-fault
replies –4 KB– while the remaining 74% are short messages, mostly related to
consistency and synchronization. In the migratory application, 24% of the total
messages exchanged corresponds to large migration messages –32 KB– while 28%
are page-fault replies –4 KB– and 48% are short messages. This comparison can
be seen in Figure 6. Although the migratory application sends larger messages,
caused by the large stack defined for the threads, the parallel application sends
more cumulative data, mostly due to the large number of page faults involved.

Figure 7 compares the number of messages sent by each processor, when
computing 4 steps of computation for the largest problem size. Because at the
beginning of computation all data is stored at processor 0, a large amount of work
is accomplished by that processor during the first step, in order to distribute data
among the other processors. Afterwards the workload is uniformly distributed
among all processors.



 0

 10

 20

 30

 40

 50

MigratoryParallel

B
yt

es
 (

M
B

)

 0

 10000

 20000

 30000

 40000

 50000

MigratoryParallel

M
es

sa
ge

s 
S

en
t

Others
4 KB

32 KB

Fig. 6. Messages and data exchanged when computing 4 steps for 217 particles



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

Node 3Node 2Node 1Node 0

M
es

sa
ge

s 
S

en
t

Others
4 KB

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

Node 3Node 2Node 1Node 0

M
es

sa
ge

s 
S

en
t

Others
4 KB

32 KB

Fig. 7. Messages sent by each processor when computing 4 steps for 217 particles



5 Related work

Three different strategies to deal with the problem of addresses stored in the
stack are found in the literature. The first approach is used in systems that rely
on programming language and compiler support to obtain information about
the pointers in order to update them during a migration. In this category are
systems like Emerald [5], Arachne [6], and Nomadic Threads [3, 7, 8]. Emerald is
an object-based system for the construction of distributed programs whose ob-
jects can move freely among processors. The compiler supports the translation
of pointers during migration. Arachne provides thread migration across het-
erogeneous platforms by extending the C++ programming language. Nomadic
Threads are compiler-generated fine-grain threads that migrate between proces-
sors to access data. They are supported by a runtime system that manages data
and thread migrations. The approach followed by these systems lacks portability,
because of their strong dependency on the compiler.

The second approach is to identify and update pointers stored in the stack
at execution time, as it is done in Ariadne [9]. This is a user-level thread library.
When a thread is migrated, its stack is inspectioned to identify and update out-
dated pointers. However, there is no guarantee that all pointers will be identified.

The third approach is the one used in DSM-PEPE, and in systems like Mil-
lipede [10], Nomad [11], and Amber [12]. Millipede is a DSM system for MS-
Windows that implements multithreading at the kernel level and thread migra-
tion. Nomad is a light-weight thread migration system that delays the sending
of the complete stack. Amber is an object-oriented DSM system implementing
thread migration. Object location is handled explicitly by the application and
the system requires a large address space to be available. Data outside the stack,
being referenced by pointers in the stack, are not migrated.

There are also mixed approaches, like MigThread [13–15], that use prepro-
cessing and run-time support to deal with the migration of the threads stacks.

6 Concluding remarks

Distributed-memory applications implementing parallelism by data distribution
among the processors usually benefits from a better cache utilization. This could
be the case of the application used in this work and can explain the high speedups
achieved.

The migratory application performs better than the parallel application, al-
though the difference of speedups is not strong in relative terms. This can be
explained because the parallel application was optimized to reduce the false
sharing within the shared data structure. Also, the escence of the chosen prob-
lem involves a large number of pages that must be updated while the thread is
migrating, causing a large stack to be moved along with each migration. In the
future we will perform experimentation with other applications that may benefit
from the enhanced data locality that thread migration can provide.



References

1. Thitikamol, K., Keleher, P.: Per-Node Multithreading and Remote Latency. IEEE
Transactions on Computers 47 (1998) 414–426

2. Thitikamol, K., Keleher, P.: Thread migration and communication minimization
in DSM systems (invited paper). Proceedings of the IEEE 87 (1999) 487–497

3. Jenks, S., Gaudiot, J.L.: An evaluation of thread migration for exploiting dis-
tributed array locality. In: Proceedings of the 16th Annual Internation Sympo-
sium on High Performance Computing Systems and Applications (HPCS’02), IEEE
Computer Society (2002) 190

4. Meza, et al.: On the Design and Implementation of a Portable DSM System
for Low-Cost Multicomputers. In: Computational Science and its Applications.
Volume 2667 of Lecture Notes in Computer Science., Springer (2003) 967–976

5. Jul, et al.: Fine-Grained Mobility in the Emerald System. ACM Transactions on
Computer Systems 6 (1988) 109–133

6. Dimitrov, B., Rego, V.: Arachne: A Portable Threads System Supporting Migrant
Threads on Heterogeneous Network Farms. IEEE Transactions on Parallel and
Distributed Systems 9 (1998) 459–??

7. Jenks, S., Gaudiot, J.L.: A multithreaded runtime system with thread migration
for distributed memory parallel computing. In: Proceedings of High Performance
Computing Symposium. (2003)

8. Jenks, S.: Multithreading and thread migration using mpi and myrinet. In:
Proceedings of the Parallel and Distributed Computing and Systems (PDCS’04).
(2004)

9. Mascarenhas, E., Rego, V.: Ariadne: Architecture of a Portable Threads System
Supporting Thread Migration. Software – Practice and Experience 26 (1996) 327–
356

10. Itzkovitz, et al.: Thread Migration and its Applications in Distributed Shared
Memory Systems. Journal of Systems and Software 42 (1998) 71–87

11. Milton, S.: Thread Migration in Distributed Memory Multicomputers. Technical
Report TR-CS-98-01, Dept of Comp Sci & Comp Sciences Lab, Australia National
University, Canberra 0200 ACT, Australia (1998)

12. Chase, et al.: The Amber System: Parallel Programming on a Network of Multi-
processors. In: Proceedings of the 12th ACM Symposium on Operating Systems
Principles, Litchfield Park AZ USA (1989) 147–158

13. Jiang, H., Chaudhary, V.: MigThread: Thread Migration in DSM Systems. In:
Proceedings of the ICPP Workshop on Compile/Runtime Techniques for Parallel
Computing. (2002)

14. Jiang, H., Chaudhary, V.: Compile/Run-time Support for Thread Migration. In:
16th International Parallel and Distributed Processing Symposium, Fort Laud-
erdale, Florida (2002)

15. Jiang, H., Chaudhary, V.: On Improving Thread Migration: Safety and Per-
formance. In: Proceedings, 9th International Conference on High Performance
Computing — HiPC2002. Volume 2552 of Lecture Notes in Computer Science.,
Springer-Verlag (2002) 474–484


