
Enabling SLA Monitoring for Component-Based SOA Applications
– A Component-Based Approach

Cristian Ruz, Françoise Baude, Bastien Sauvan
INRIA Sophia Antipolis, CNRS, I3S, Univ. de Nice Sophia Antipolis, France

{cruz,fbaude,bsauvan}@inria.fr

1. Motivation and General View

In service provisioning relationships, contracts re-
lating to Quality of Service (QoS) are agreed in the
form of a Service Level Agreement (SLA), which
establishes conditions that must be met by the provider
of the service. SLAs are often described as a set of
Service Level Objectives (SLO). To watch the fulfil-
ment of this contract, these SLOs must be monitored
at runtime performing SLA monitoring [1].

The ability to collect QoS parameters is particularly
important in Service Oriented Architectures (SOA),
where the situation is that of a set of loosely cou-
pled interacting heterogenous services from different
providers. The monitoring and management task is thus
intrinsically a distributed matter. Component-based ap-
proaches have emerged as a suitable alternative to
traditional, purely service oriented ones (e.g. Web Ser-
vices based orchestrations) to design and build SOAs,
much strongly enforcing principles like reusability,
encapsulation, composability, and interoperability. The
Service Component Architecture (SCA) has emerged
as a standard specification, technologically agnostic,
for designing and building SOA applications, by mod-
eling services as components which can be reached
by other services or by external applications through
the use of appropriate bindings. Runtime managements
concerns, however, are not addressed by this specifi-
cation and are left as a platform specific issue.

Monitoring the runtime behaviour of such appli-
cations and watch the compliance to an SLA is not
an easy task. Online data must be extracted and QoS
metrics must be kept up to date; the composing and
bindings can change and new components may need
to be monitored; the SLOs can also evolve at runtime.
There is an overhead cost and a tradeoff must be made
with respect to the amount of data to collect.

Several existing solutions are oriented to specific
technologies like Web Services [2] or J2EE [3], or
rely on measurements at the network level, and detect

A

M

DC

M

MMca d

B

b

Component
based app.

Monitor
Controllers

monitored by

Figure 1. Components and Monitor Controllers.

interactions by correlating events [4]. Other approaches
while extensible and low intrusive can only be cus-
tomized at design time [5].

In this work we intend to show that by imple-
menting the monitoring task using a component-based
approach we can provide a customizable, scalable and
even adaptable architecture to exhibit the information
required to fulfil SLAs.

2. Current Solution

We are proposing a solution that takes a component-
based approach to obtain QoS parameter values. Our
solution is built around a component that we call Mon-
itor Controller that can be adapted to the monitoring
requirements of an SLA. We have built an example
where our solution can be used to obtain performance
metrics and we plan to extend this approach to mon-
itor other aspects of QoS that can be systematically
computed, like dependability and trust.

At deployment time, each applicative component is
deployed with a Monitor Controller attached, turning
the component into a monitored component. The Mon-
itor Controllers are interconnected forming a monitor-
ing layer, to communicate the data they capture. This
monitoring layer resembles the hierarchical structure
of the application as shown on Figure 1.

The Monitor Controller leverages the information
that can be obtained from the runtime platform. The
collection of monitoring data can be based on inter-
ception of requests or by listening to events provided
by the component platform.



Monitor 
Core

Log Store

Event 
Listener

Infrastructure 
collector

Interceptor 
Collector

monitoring-
service

interceptors

external-
monitors

Figure 2. Internal Composition

2.1. Performance Monitoring

The Monitor Controller can be configured to col-
lect performance metrics following, for example, the
architecture shown on Figure 2. By storing the time
taken by each request and communicating with the
Monitor Controller of other components, it is possible
to dynamically determine the components involved in
the computation, the time spent on each one of them,
as well as the time waiting for replies. From these
measures, performance metrics can be computed for
each component and a request path can be established
for each request.

By measuring times both in the caller side and in
the server side it is possible to determine also the
latency of the calls. This differentiation is important in
service selection when considering the QoS provided
by a service. For example, a component can have a
good average service time, but it may be accessible
through a very slow network link, so it may not be a
good choice against a similar component with bigger
service time, but with lower latency.

2.2. SLA Monitoring

For monitoring the compliance to an SLA, another
component called SLA Monitor con be connected to
the Monitor Controller. The SLA Monitor uses the
information collected to check the conditions specified
by an specific SLO within an SLA, and can trigger an
alarm if a condition is violated. The component-based
approach allows to replace the SLA Monitor at runtime
in case the SLOs evolve, to watch the new conditions.
This configuration is exemplified on Figure 3.

For example, the SLA Monitor can be watching the
SLO: “90% of the requests must be served within 2
secs.”. At a certain moment, the SLO can change to,
or add the condition: “No more than 1 sec. must be
spent in network communication”. The SLA Monitor
component can be replaced for another one that is
programmed to watch the new SLO.

2.3. Implementation

We have implemented a small example from Fig-
ure 4, using the GCM/ProActive middleware which

EB

A Monitor
Controller

C

SLA
Monitor

alarm

Figure 3. Location of the Monitor Controller

EB

A

C

D

Web 
Service

F

p

q
q

p
s

t

u

v v

u u

Z
r0

r1

r2 r3

r4

r5

r6

r7

Figure 4. Request path. Client Z calls p on A

implements a component model with asynchronous
communications, and which provides an SCA person-
ality to interact with other SCA-based applications. In
this example, we are able to obtain information from
each component and reconstruct the service invocation
path of any specific request, including the time spent in
each component and determine a possible performance
problem. The current experiments have shown that
under a heavy load of applicative messages, the moni-
toring overhead is no bigger than 4%. We are working
on extending this experiment with an SLA Monitor
encompassing several and dynamically evolving SLOs.

References

[1] M. Schmid and R. Kröger, “Decentralised QoS-
Management in Service Oriented Architectures,” in
DAIS, 2008.

[2] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar,
“Comprehensive QoS monitoring of Web services and
event-based SLA violation detection,” in MWSOC ’09:
Proc. of the 4th Int. Workshop on Middleware for Service
Oriented Computing. ACM, 2009, pp. 1–6.

[3] T. Parsons, A. Mos, and J. Murphy, “Non-intrusive end-
to-end runtime path tracing for J2EE systems,” IEE
Proceedings Software, vol. 153, no. 4, p. 149, 2006.

[4] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier,
“Using magpie for request extraction and workload
modelling,” in OSDI’04: Proc. of the 6th Symposium on
Operating Systems Design & Implementation, 2004.

[5] M. Rohr, A. van Hoorn, J. Matevska, N. Sommer,
L. Stoever, S. Giesecke, and W. Hasselbring, “Kieker:
continuous monitoring and on demand visualization of
java software behavior,” in SE ’08: Proc. IASTED Int.
Conf. on Soft. Engineering, 2008.


